

Tuesday 5 November 2019

\author{

Morning (Time: 1 hour 30 minutes)	Paper Reference 1MA1/1F

}

Mathematics

Paper 1 (Non-Calculator) Foundation Tier

You must have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser.
Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- You must show all your working.

- Diagrams are NOT accurately drawn, unless otherwise indicated.
- Calculators may not be used.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Pearson

Answer ALL questions.

Write your answers in the spaces provided.
You must write down all the stages in your working.
1 Write down the value of the 7 in the number 1074
thousands hundreds tens units

70

2 Write 4.58 correct to 1 decimal place.

$$
8 \text { is more than } 5 \text { so round up }
$$ $.5 \rightarrow .6$

4.6

(Total for Question $\mathbf{2}$ is $\mathbf{1}$ mark)

3 Work out 31.7×100

$\times 100=$ shift decimal point two digits right
 $31.700 \rightarrow 3170$
 u
 3170

4 Write the fraction $\frac{28}{70}$ in its simplest form.

5 Write 15% as a decimal.

$$
\begin{aligned}
& 15 \%=15 \text { out of } 100 \\
& 15 \div 100=0.15
\end{aligned}
$$

6 The pictogram shows information about the number of pictures sold in an art shop in each of January, February and March.

(a) Write down the number of pictures sold in January.

(b) Show this information on the pictogram.

$$
12 \div 8=1.5=\square \bar{L}
$$

\qquad
(c) What was the total number of pictures sold in these four months?

$$
\begin{aligned}
& 9 \square=9 \times 8=72 \\
& 3\left[=3 \times 4=12 \leftarrow\left[=\frac{1}{2} \text { of } 8=4\right.\right. \\
& 72+12=84
\end{aligned}
$$

7 Work out the difference, in minutes, between 1 hour 25 minutes and $1 \frac{1}{4}$ hours.
1 hour 25 minutes $=60$ minutes +25 minutes $=85$ minutes 1 hour $=60$ minutes
$1 \frac{1}{4}$ hours $=60$ minutes $+(1 / 4 \times 60$ minutes $)=60+15=75$ minutes

$$
\rightarrow \frac{1}{4} \times 60=\frac{60}{4}=15
$$

$85-75=10$ minutes

8 Prasha has five blocks of wood.
The total weight of all five blocks of wood is 3 kilograms.
4 of the blocks of wood each have a weight of 650 grams.
Work out the weight, in grams, of the other block of wood.
3 kilograms $=3000$ grams
$4 \times 650=2600$ grams
-total weight of the 4 blocks
$3000-2600=400$ grams
$9 \quad P Q R$ is a straight line.

Work out the size of angle x.
sum of angles on a straight line $=180^{\circ}$
$180^{\circ}-100^{\circ}-35^{\circ}=45^{\circ}$

$$
45
$$

10

(a) Plot the point with coordinates $(3,2)$

Label this point A.
(b) Write down the coordinates of the midpoint of $B C$.

$$
\begin{aligned}
& \text { Use a ruler to measure the length of } B C \text {. } \\
& \text { Divide the length by } 2 \text { and write the point. }
\end{aligned}
$$

$$
(-1,0,
$$

11 Mason throws a coin 3 times.
The outcome of each throw is either Heads or Tails.
List all the possible outcomes of the 3 throws.
Heads $=\mathrm{H}$
Tails $=T$
HUT HHH HT HTH
IT TTH TH TH

12 Rehan is on holiday in the USA.
He has $\$ 200$ to spend on clothes.
Rehan buys
1 pair of trainers costing $\$ 60$
3 T-shirts costing $\$ 25$ each.
He also wants to buy a jacket costing $\$ 80$
(a) Has Rehan got enough money to buy the jacket?

You must show how you get your answer.

Rehan says,
"The trainers cost less than $£ 40$ "
Rehan is wrong.
(b) Using a suitable approximation, show working to explain why.

$$
\begin{aligned}
& £ 0.749 \approx £ 0.7 \\
& \quad \text { round down to } 1 \mathrm{dp} \\
& 60 \times £ 0.7=£ 42
\end{aligned}
$$

$$
60 \times 0.7=\frac{60 \times 7}{10}
$$

$$
=\frac{420}{10}
$$

$$
=42
$$

E4L is more than $£ 40$ so Rehan is wrong.

13 (a) Simplify $2 a \times 5 b$

$$
\begin{aligned}
2 a \times 5 b=2 \times a \times 5 \times b & =(2 \times 5) \times(a \times b) \\
& =10 a b
\end{aligned}
$$

(b) Simplify $3 x+2 y+5 x-y$

$$
\begin{aligned}
3 x+2 y+5 x-y & =(3 x+5 x)+(2 y-y) \\
& =8 x+y \quad \text { collect like terms }
\end{aligned}
$$

14 Work out 23×15

x	10	5
20	200	100
3	30	15

$$
200+100+30+15=345
$$

	R \quad23 $\times \quad 15$ 20×10 200 3×5 15 20×5 100 $3 \times 10 \quad 30$ 345

15120 people were at a hockey match.
Each person was asked if they wanted to stand or to sit to watch the match.
75 of the people were female
29 of the males wanted to stand
30 of the people wanted to sit
(a) Use this information to complete the frequency tree.

(3)

One of the 120 people is chosen at random.
(b) Write down the probability that this person is a male who wanted to stand.

29 males who want to stand out of 120 people $=\frac{29}{120}$

$$
\frac{29}{120}
$$

16 Steve drove from his home to his friend's house.
He stayed at his friend's house and then drove home.
Here is Steve's travel graph.

(a) For how many minutes did Steve stay at his friend's house?
stationary time: where the line is horizontal minutes

$12: 45$ to $13: 30=45$ minutes

(b) What was Steve's average speed on his journey home?

$$
\begin{gathered}
\text { speed }=\frac{\text { distance }}{\text { time }}=\frac{25}{0 \cdot 5}=50 \mathrm{~km} / \mathrm{h} \\
セ_{30 \mathrm{mins}}=\frac{1}{2} \text { hour }
\end{gathered}
$$

$17 x-1=2$
Work out the value of $2 x^{2}$

$$
+1\binom{x-1=2}{x=3}+1
$$

Apply BIDMAS - indices first, then $\times 2$
$2\left(x^{2}\right)=2\left(3^{2}\right)=2(9)=18$

18 The pie charts show information about the favourite animal of each student at school \mathbf{A} and of each student at school B.

There are 480 students at school \mathbf{A}.

School B

There are 760 students at school B.

Henry says,
"The same number of students at each school have tigers as their favourite animal."
Is Henry correct?
You must show how you get your answer.

School A:

-60

$$
x+x+60^{\circ}=360^{\circ}-
$$

$$
2 x=300^{\circ}
$$

$\therefore 2\left(x=150^{\circ}\right.$
$\frac{150}{360} \times 480=200$
There are 200 students who have tigers as their favourite animal in School A.

Henry is not correct because $200 \neq 190$

19 Here is a number line,

Write down the inequality shown on the number line.

$$
-3 \leq p<1
$$

$$
-3 \leq p<1
$$

(Total for Question 19 is 2 marks)

20 Find the Lowest Common Multiple (LCM) of 108 and 120

LCH: (12) $\times(3) \times(3) \times(2) \times(5)=1080$

1080
(Total for Question 20 is 3 marks)

21 There are 60 people in a choir.
Half of the people in the choir are women.
The number of women in the choir is 3 times the number of men in the choir.
The rest of the people in the choir are children.
the number of children in the choir : the number of men in the choir $=n: 1$
Work out the value of n.
You must show how you get your answer.
$60 \div 2=30$ women in the choir
r half $\left(\frac{1}{2}\right)$ are women.
$30 \div 3=10$ men in the choir
ot third ($\frac{1}{3}$) of women = men
$60-10-30=20$ children in the choir

- rest are children
children: men $=10$

$$
\begin{gathered}
20: 10=\frac{2: 1}{(n: 1)} \quad \text { so } n=2
\end{gathered}
$$

$$
n=\quad 2
$$

(Total for Question 21 is 4 marks)
22 Work out $1 \frac{3}{4} \times 1 \frac{1}{3}$
Give your answer as a mixed number.

$$
\begin{aligned}
& 1=\frac{4}{4} \text { so } 1 \frac{3}{4}=\frac{4}{4}+\frac{3}{4}=\frac{4+3}{4}=\frac{7}{4} \\
& 1=\frac{3}{3} \text { so } 1 \frac{1}{3}=\frac{3}{3}+\frac{1}{3}=\frac{3+1}{3}=\frac{4}{3} \\
& 1 \frac{3}{4} \times 1 \frac{1}{3}=\frac{7}{4} \times \frac{4}{3} \\
&=\frac{7 \times 4}{4 \times 3} \quad \text { fractions. } \\
&=\frac{28}{12}
\end{aligned}
$$

(Total for Question 22 is 3 marks)

23 Use a ruler and compasses to construct the line from the point P perpendicular to the line $C D$. You must show all construction lines.

2. Set the compass to a shorter width and
draw an arc from A.
3. Draw an arc of the same width from B. Label the intersection E.
4. Connect points P and E with a straight line (use a ruler).
(Total for Question 23 is 2 marks)

24 The diagram shows triangle $A B C$.

$A D B$ is a straight line.
the size of angle $D C B$: the size of angle $A C D=2: 1$
Work out the size of angle $B D C$.

$$
\begin{aligned}
75^{\circ}+51^{\circ}+2 x+x & =180^{\circ} \quad 180^{\circ} \text { in a triangle } \\
126^{\circ}+3 x & =180^{\circ} \\
3 x & =54^{\circ}-126 \\
18^{\circ} & =x
\end{aligned}
$$

$D \hat{C B}=2 x=2(18)=36^{\circ}$ $B \hat{D C}=980^{\circ}-36^{\circ}-51^{\circ}=93^{\circ}$

180° in a triangle

254 red bricks have a mean weight of 5 kg .
5 blue bricks have a mean weight of 9 kg .
1 green brick has a weight of 6 kg .
Donna says,
"The mean weight of the 10 bricks is less than 7 kg ."
Is Donna correct?
You must show how you get your answer.

$$
4 \times 5 \mathrm{Kg}=20 \mathrm{Kg}
$$

$$
\text { mean }=\frac{\text { total of weights }}{\text { number of bricks }}
$$

$5 \times 9 \mathrm{Kg}=45 \mathrm{Kg}$
mean X number of bricks $=$ total of weights
$1 \times 6 \mathrm{Kg}=6 \mathrm{Kg}$

$$
\frac{20+45+6}{4+5+1}=\frac{71}{10}=7.1 \mathrm{~kg}
$$

$7.1 \mathrm{Kg}>7 \mathrm{Kg}$ so Donna is not correct.
(Total for Question 25 is $\mathbf{3}$ marks)

26 (a) Simplify $\left(p^{2}\right)^{5}$

$$
\left(p^{2}\right)^{5}=p^{2 \times 5}=p^{10}
$$

$$
\left(m^{a}\right)^{b}=m^{a \times b}
$$

(b) Simplify $12 x^{7} y^{3} \div 6 x^{3} y$

$$
\begin{gathered}
12 x^{7} y^{3} \div 6 x^{3} y=\frac{12}{6} x^{7-3} y^{3-1}=2 x^{4} y^{2} \\
m^{a} \div m^{b}=m^{a-b}
\end{gathered}
$$

$2 x^{4} y^{2}$
(Total for Question 26 is $\mathbf{3}$ marks)

27 The accurate scale drawing shows the positions of port P and a lighthouse L.

Scale: 1 cm represents 4 km .
325°

Aleena sails her boat from port P on a bearing of 070°
She sails for $1 \frac{1}{2}$ hours at an average speed of $12 \mathrm{~km} / \mathrm{h}$ to a port Q.
Find
(i) the distance, in km, of port Q from lighthouse L,
(ii) the bearing of port Q from lighthouse L.
i) speed $=$ distance \div time so

$$
\begin{aligned}
\text { distance } & =\text { speed } \times \text { time } \\
& =12 \times 1.5 \\
& =18 \mathrm{Km}
\end{aligned}
$$

$18 \mathrm{Km} \div 4 \mathrm{Km}=4.5 \mathrm{~cm}$ so Q is 4.5 cm from P
Measure 070° from North with a protractor and mark Q 4.5 cm from P.
Measure distance QL (about 5.25 cm).
$5.25 \times 4=21 \mathrm{Km}$
ii) Using a protractor, measure angle clockwise from L to Q. (about 325°)

28 The diagram shows triangle $A O B$.

Angle $A O B$ is not an obtuse angle.
Find the greatest value of x.
You must show all your working.
Obtuse angle: more than 90°. So AOB must be 90° or less.
$2 x+3 x+10^{\circ} \leqslant 90^{\circ}$
$-10^{\circ} G^{5 x+}+10^{\circ} \leqslant 90^{\circ}$
$5(x \leqslant 16$
So the greatest value of x is 16 .
$29 A B C$ and $P Q R$ are similar right-angled triangles.

angle $A B C=$ angle $P Q R$
(a) Work out the length of $P R$.
$R Q$ is $\frac{10}{15}=\frac{2}{3}$ of $C B$ so scale factor is $\frac{2}{3}$ $9 \times \frac{2}{3}=6$ so PR is 6 cm

Triangle $E G H$ is congruent to triangle $K G F$.

$H K=10 \mathrm{~cm}$.
10 cm
$H G=4 \mathrm{~cm}$.
(b) Work out the length of $E F$.

Triangles are congruent so all corresponding side lengths are equal. $G K=H K-H G=10-4=6 \mathrm{~cm}$
$H G=F G=4 \mathrm{~cm}$ and $G K=E G=6 \mathrm{~cm}$
$E F=E G-F G=6-4=2 \mathrm{~cm}$

